

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

Tradingene: A Package For Backtesting Trading Algorithms

[image: _images/logo_tg_large_1stroke.png]image

See full documentation here [https://package.tradingene.com/]

The Tradingene package turns your computer into a tool for developing and backtesting trading strategies you write in the Python programming language. Having been developed and backtested, these ones can be then easily adapted for live trading at the Tradingene Platform [https://tradingene.com].

Installation

Tradingne can be installed via pip for python3:

pip3 install tradingene

Getting Started

An algorithm performs a trading logic that is implemented in a user defined function. If we want to test profitability of this logic we have to perform a backtest which consists of a series of consecutive calls of this (user defined) function.

Suppose we came up with the following trading logic:

	open a long position if the closing price of a bar is greater than the open price;

	open a short position if the closing price of a bar is less than the open price;

	do not make any changes to the position otherwise.

To start coding we need to define the name and the regime of the algorithm as well as the start_date and the end_date of the backtesting period:

Setting parameters

from datetime import datetime
from tradingene.algorithm_backtest.tng import TNG
from tradingene.backtest_statistics import backtest_statistics as bs
name = "Cornucopia"
regime = "SP"
start_date = datetime(2018, 9, 1)
end_date = datetime(2018, 10, 1)

After that we are ready to create an instance of the TNG class. The instance named alg will contain all the methods required for backtesting.

alg = TNG(name, regime, start_date, end_date)

See more on initialization.

Next we are able to specify an instrument and timeframe (measured in minutes) that we will use in our backtest:

alg.addInstrument("btcusd")
alg.addTimeframe("btcusd", 1440)

See more on adding instruments and timeframes.

Implementing trading logic

In the next step we will code the onBar() function that will implement our trading logic:

def onBar(instrument):
 if instrument.open[1] > instrument.close[1]:
 # If the price moved down we take a short position
 alg.sell()
 elif instrument.open[1] < instrument.close[1]:
 # If the price moved up we take a long position
 alg.buy()
 else:
 # If the price did not change then do nothing
 pass

The instrument variable contains price values as well as the values of specified technical indicators.

See more on onBar function.

Now we are ready to run a backtest:

alg.run_backtest(onBar)

Results of backtest

After the backtest is complete we may retrieve the statistics to estimate the performance of our algorithm:

stats = bs.BacktestStatistics(alg)
stats.backtest_results(plot=True, filename="backtest_stats")

With these lines of code we make the backtest statistics formatted into an html page named backtest_stats.html. This page also shows us a cumulative profit plot, just like the one presented below:

[image: _images/profit_plot.png]image

See more on backtest statistics.

Machine learning and loading data

A powerful feature of the Tradingene package is the ability to load, recalculate and convert data into a form suitable to train machine learning models with. That’s why an algotrader can easily create and backtest “learning” trading robots.

With a series of our mini-lessons you’ll learn how to use neural networks for solving classification and regression problems (with respect to the challenges of trading) as well as how to engage an SVM etc.

See more on loading data.

 site_name: Tradingene
nav:

	Home: README.md

	User Guide:
- Creating Algorithm: user_guide/misc/initialization.md
- Adding instruments and timeframes: user_guide/misc/import_instruments.md
- onBar function: user_guide/misc/onbar.md
- Trading routines: user_guide/trade_activity/trade_activity.md
- Backtest Results: user_guide/backtest_statistics/backtest_results.md

	Examples:
- First algorithm: user_guide/examples/first-alg.md
- Using mulpile positions: user_guide/examples/using-positions.md
- Classification with neural networks: user_guide/examples/nn-2classes.md
- Regression with neural networks: user_guide/examples/nn-regression.md
- Neural network: user_guide/examples/nn-withindicators.md
- SVM: user_guide/examples/svm.md

	Work with data:
- Loading Data: user_guide/misc/loading_data.md
- Export Data: user_guide/misc/export_data.md

	Misc:
- Limits: user_guide/misc/limits.md
- Indicators: user_guide/indicators/indicators_main.md
- How to address indicator values: user_guide/indicators/how_to_address_indicator_values.md

theme: readthedocs

Tradingene’s package for backtesting trading algorithms

[image: ../../_images/logo_tg_large_1stroke.png]image

Tradingene allows you to write and backtest strategies written in Python. You can easily rewrite your code if you want to use it on the Tradingene’s platform for live trading.

Installation

Tradingne can be installed via pip for python3:

pip3 install tradingene

Getting Started

An algorithm represents some trading logic. Trading logic is reflected in a some user defined method. If one wants to test profitability of this logic one needs to perform backtest which consists of consequent calls of a user defined function.

Suppose we have the following trading logic:

	take a long position if a close price of a bar was greater than open price;

	take a short position if a close price of a bar was less than open price;

	do not change position otherwise.

To start code the algorithm from above we need to define name, regime of the algorithm and start_date and end_date of backtest:

Setting parameters

from datetime import datetime
from tradingene.algorithm_backtest.tng import TNG
from tradingene.backtest_statistics import backtest_statistics as bs
name = "Cornucopia"
regime = "SP"
start_date = datetime(2018, 9, 1)
end_date = datetime(2018, 10, 1)

After that we are ready to create an instance of the class TNG. The instance alg will contain all functions that needed for backtest.

alg = TNG(name, regime, start_date, end_date)

See more on initialization.

After that we are able to specify an instrument and timeframe (measured in minutes) that we will use in our backtest:

alg.addInstrument("btcusd")
alg.addTimeframe("btcusd", 1440)

See more on adding instruments and timeframes.

Implementing trading logic

In the next step we will implement onBar() function that will reflect our trading logic from above:

def onBar(instrument):
 if instrument.open[1] > instrument.close[1]:
 # If the price moved down we take a short position
 alg.sell()
 elif instrument.open[1] < instrument.close[1]:
 # If the price moved up we take a long position
 alg.buy()
 else:
 # If the price did not change then do nothing
 pass

Values of technical indicators or for instance open prices contained in the variable instrument.

See more on onBar function.

Now we are ready to run backtest:

alg.run_backtest(onBar)

Results of backtest

After backtest is complete it is possible to get some statistics that describes a performance of your algorithm:

stats = bs.BacktestStatistics(alg)
stats.backtest_results(plot=True, filename="backtest_stats")

These lines will generate you an html file called backtest_stats.html with backtest statistics and draw a plot with cumulative profit like am image below:

[image: ../../_images/profit_plot.png]image

See more on backtest statistics.

Machine learning and loading data

One powerful ability of tradingene package is the ability to load and operate on data for creating machine learning based algorithms.

See examples of using neural networks for classification and regression problems or an example with SVM.

See more on loading data.

List of methods

backtest_results

Description

This method calls all other methods for generating comprehensive list of algorithm’s statistics.

Arguments:

	plot (boolean, default True): If True, after calling method
will automatically open html file with backtest statistics.

	filename (str, default “stats”): Name of the file where backtest
statistics will be saved.

Returns:

	None

Examples:

#Statistics will be saved in stats.html and showed after calculations
stats = bs.BacktestStatistics(alg)
stats.backtest_results()

calculate_PnL

Description

Calculates cumulative profit over backtest period including profit of the last position whether it was closed or not.

Arguments:

	None

Returns:

	float: Cumulative profit.

Examples:

stats = bs.BacktestStatistics(alg)
pnl = stats.calculate_PnL()

calculate_number_of_trades

Calculates the number of closed position while backtest.

Arguments:

	None

Returns:

	int: The number of closed positions.

Examples:

stats = bs.BacktestStatistics(alg)
number_of_trades = stats.calculate_number_of_trades()

calculate_reliability

Calculates reliability, i.e. ratio of the number of profitable positions to the number of all positions.

Arguments:

	None

Returns:

	float: Reliability of an algorithm. If no positions were opened returns 0.

Examples:

stats = bs.BacktestStatistics(alg)
reliability = stats.calculate_reliability()

calculate_RRR

Calculates Risk Reward Ratio. RRR is defined as ratio of the mean of all losing positions to mean of all profitable positions:

Arguments:

	None

Returns:

	float: Risk reward ratio. If no profitable trades were while backtest returns 0.

Examples:

stats = bs.BacktestStatistics(alg)
risk_reward_ratio = stats.calculate_RRR()

calculate_drawdown

Calculates a drawdown and drawdown length.

Arguments:

	None

Returns:

	list: (drawdown, drawdown_length).

Examples:

stats = bs.BacktestStatistics(alg)
drawdown, drawdown_len = stats.calculate_drawdown()

calculate_AT

Calculates an average profit over all positions in the backtest (Average Trade).

Arguments:

	None

Returns:

	float: Average profit.

Examples:

stats = bs.BacktestStatistics(alg)
average_trade = stats.calculate_AT()

calculate_ATT

Calculates an average duration over all positions (Average Time in Trade).

Arguments:

	None

Returns:

	float: Average duration.

Examples:

stats = bs.BacktestStatistics(alg)
average_time = stats.calculate_ATT()

calculate_ADPD

Calculates an average number of positions per day (Average Deals Per Day).

Arguments:

	None

Returns:

	float: Average number of positions. If no positions were opened returns 0.

Examples:

stats = bs.BacktestStatistics(alg)
average_pos_per_day = stats.calculate_ADPD()

calculate_profit

Calculates an overall profit of all profitable positions.

Arguments:

	None

Returns:

	float: Profit. If no positions were opened returns 0.

Examples:

stats = bs.BacktestStatistics(alg)
profit = stats.calculate_profit()

calculate_loss

Calculates an overall loss of all losing positions.

Arguments:

	None

Returns:

	float: Loss. If no positions were opened returns 0.

Examples:

stats = bs.BacktestStatistics(alg)
loss = stats.calculate_loss()

calculate_AWT

Calculates an average profit over all profitable positions (Average Winning Trade).

Arguments:

	None

Returns:

	float: Average profit. If no positions were opened returns 0.

Examples:

stats = bs.BacktestStatistics(alg)
average_profit = stats.calculate_AWT()

calculate_ALT

Calculates an average loss over all losing positions (Average Losing Trade).

Arguments:

	None

Returns:

	float: Average loss. If no positions were opened returns 0.

Examples:

stats = bs.BacktestStatistics(alg)
average_loss = stats.calculate_ALT()

calculate_WT

Calculates a number of profitable positions (Winning Trades).

Arguments:

	None

Returns:

	int: Number of profitable positions.

Examples:

stats = bs.BacktestStatistics(alg)
winning_pos = stats.calculate_WT()

calculate_LT

Calculates a number of losing positions (Losing Trades).

Arguments:

	None

Returns:

	int: Number of losing trades.

Examples:

stats = bs.BacktestStatistics(alg)
losing_pos = stats.calculate_LT()

calculate_LWT

Calculates a profit of the most profitable position (Largest Winning Trade).

Arguments:

	None

Returns:

	float: Largest profit. If no positions were opened returns 0.

Examples:

stats = bs.BacktestStatistics(alg)
largest_profit = stats.calculate_LWT()

calculate_LLT

Calculates a loss of the most losing position (Largest Losing Trade).

Arguments:

	None

Returns:

	float: The least loss. If no positions were opened returns 0.

Examples:

stats = bs.BacktestStatistics(alg)
largest_loss = stats.calculate_LLT()

calculate_ATWT

Calculates an average duration of profitable positions (Average Time in Winning Trade).

Arguments:

	None

Returns:

	float: Average duration. If no profitable positions were closed returns 0.

Examples:

stats = bs.BacktestStatistics(alg)
average_win_time = stats.calculate_ATWT()

calculate_ATLT

Calculates an average duration of losing positions (Average Time in Losing Trade).

Arguments:

	None

Returns:

	float: Average duration. If no losing positions were closed returns 0.

Examples:

stats = bs.BacktestStatistics(alg)
average_los_time = stats.calculate_ATLT()

calculate_MCW

Calculates the largest number of consequent profitable trades (Maximum Consecutive Winners).

Arguments:

	None

Returns:

	int: The largest number of consequent profitable trades.

Examples:

stats = bs.BacktestStatistics(alg)
max_cons_win = stats.calculate_MCW()

calculate_MCL

Calculates the largest number of consequent losing trades (Maximum Consecutive Losers).

Arguments:

	None

Returns:

	int: The largest number of consequent losing trades.

Examples:

stats = bs.BacktestStatistics(alg)
max_cons_los = stats.calculate_MCL()

Backtest results

After you have run alg.run_backtest(onBar) you are able to analyze the performance of your algorithm. To do this you need to initialize an instance of the BacktestStatistics class passing alg as a parameter for the initializer:

from datetime import datetime
from tradingene.algorithm_backtest.tng import TNG
from tradingene.backtest_statistics import backtest_statistics as bs

##
here goes code of your algorithm
##

stats = bs.BacktestStatistics(alg)

Class BacktestStatistics comprises methods that calculate algorithm’s specific statistics. For instance if you wish to calculate cumulative profit (or profit and loss) and the overall number of trades of a backtest you write:

stats = bs.BacktestStatistics(alg)
pnl = stats.calculate_PnL()
number_of_trades = stats.calculate_number_of_trades()

See full list of methods

If you want to calculate all available statistics with a single method, use backtest_results:

stats = bs.BacktestStatistics(alg)
stats.backtest_results(plot=True, filename="backtest_stats")

Using SVM

Full python code see here [https://github.com/iburenko/tradingene/blob/master/tradingene/examples/svm.py]; ipython notebook is here [https://github.com/iburenko/tradingene/blob/master/tradingene/examples/SVM.ipynb].

With the Tradingene framework you are allowed to use all variety of machine learning methods, not restricting yourself with neural networks only. Two most popular libraries sklearn and keras are fully available for use as in the Framework so in the Platform.

A sample script presented below implements a simple trading robot that makes trades according to the signals of an SVC model. To utilize such a model we import the required library first:

from sklearn.svm import SVC

Next a model must be created and trained:

Creating an SVC model
model = SVC(tol=1e-4, degree=4)
train_output = np.reshape(data['train_output'], (np.shape(data['train_output'])[0],))
model.fit(data['train_input'], train_output)

Eventually when implementing the onBar() function we use the predict method of the SVC class just like we do with neural networks:

prediction = model.predict([inp])[0]

Using multiple positions

Full python code here [https://github.com/iburenko/tradingene/blob/master/tradingene/examples/first_alg.py]; ipython notebook here [https://github.com/iburenko/tradingene/blob/master/tradingene/examples/nn_2classes.ipynb]

Along with buy() and sell() the Tradingene framework provides you with more tools for making trades including openLong() and openShort() functions. With these ones you may have two positions of opposite side opened at the same time. Opening a “counter-trade” while holding another one still opened may serve several purposes, e.g. temporarily hedging while surviving a drawdown, saving commission expanses payed to exchange etc.

When opening a trade with either openLong() or openShort() you must specified the number of lots to use:

	long_position = alg.openLong(1) # ...buying 1 lot.

The function returns the identifier of a position just been opened. We may use this identifier to control position in the future. For example we may specify a function to be called when the position is closed:

	alg.onPositionClose(long_position, onLongPositionClose) # Specifying the function to be called when the position is

How to address indicator values

Most indicators calculate only one value for each candle bar. If so the values are retrieved in the form of a list where index “1” refers to the latest fully formed candle, index “2” refers to the one preceeding it and so on. The number of values in the list can not exceed 50. Before addressing a value in the list you are recommended to use the “len()” function to avoid “index out of range” error.

Example:

 def onBar(instrument):
 # Retrieving the value of APO for the latest fully formed candle.
 value = instrument.apo(periodFast=10)[1]
 # Please note that the "periodFast" argument is specified explicitly while for
 # the other arguments the default values are used.

if an indicator calculates more than one value for each candle bar, the values are retrieved as an instance of a special internal class (named “IndVals)” with each attribute refering to the corresponding list of values. Each list is indexed in the same way described above: index “1” refers to the latest fully formed candle, index “2” refers to the one preceeding it and so on. Before addressing a value in the list you are recommended to use the “len()” function to avoid “index out of range” error.

Example:

 def onBar(instrument):
 # Retrieving the values of STOCHASTIC for the latest fully formed candle:
 valueOfK = instrument.stochastic(period=10, periodD=4).k[1]
 valueOfD = instrument.stochastic(period=7, periodD=5).d[1]
 # Please note that the "period" and "periodD" arguments are specified explicitly
 # while the "smoothing" argument receives default value "1".

 Here we list all indicators that available in onBar method.

ADX

Calculates values of the ADX indicator.

Arguments:

	periodADX (optional, default:14): is the ADX smoothing period,

	periodDI (optional, default:14): is the “+DI” and “-DI” smoothing period,

	priceType (optional, default:”close”): is one of the following: “open”, “high”, “low”, “close”

Returns:

	An instance of the IndVals class with the following attributes:

	adx (list, np.float64): A list of “adx” values of the indicator.

	pdi (list, np.float64): The “+DI” line values.

	mdi (list, np.float64): The “-DI” line values.

See also: How to Address Indicator Values.

Examples:

def onBar(instrument):
 # Retrieving the values of ADX for the latest fully formed candle:
 valueOfADX = instrument.adx(periodADX=10).adx[1]
 plusDI = instrument.adx(periodADX=10).pdi[1]
 minusDI = instrument.adx(period=10).mdi[1]
 # Please note that the "periodADX" argument is specified explicitly
 # while the other ones receives the default values.

APO

Calculates values of the “APO” indicator.

Arguments:

	periodFast (optional, default:12): the period of the “fast” smoothing moving average.

	periodDI (optional, default:26): the period of the “slow” smoothing moving average.

	priceType (optional, default:”close”): is one of the following: “open”, “high”, “low”, “close”.

Returns:

	list (np.float64): A list of values of the “APO” indicator.

See also: How to Address Indicator Values.

Examples:

def onBar(instrument):
 # Retrieving the value of APO for the latest fully formed candle.
 value = instrument.apo(periodFast=10)[1]
 # Please note that the "periodFast" argument is specified explicitly while for
 # the other arguments the default values are used.

AROON

Calculates values of the AROON indicator.

Arguments:

	period (optional, default:25) is the period of “Aroon”,

	priceType (optional, default:”close”) is one of the following: “open”, “high”, “low”, “close”

Returns:

	An instance of the IndVals class with the following attributes:

	up (list, np.float64): A list of “Aroon Up” values.

	down (list, np.float64): A list of “Aroon Down” values.

See also: How to Address Indicator Values.

Examples:

def onBar(instrument):
 # Retrieving the values of ADX for the latest fully formed candle:
 aroonUp = instrument.aroon(period=10).up[1]
 aroonDown = instrument.aroon(period=10).down[1]
 # Please note that the "period" argument is specified explicitly
 # while the "priceType" one receives the default value "close".

ATR

Calculates values of the “ATR” indicator.

Arguments:

	period (optional, default:14) is the period of the indicator,

	maType (optional, default:”sma”) is the type of moving average to use (the possible values are: “sma”, “ema”, “wma”, rma”)

Returns:

	list (np.float64): A list of values of the “ATR” indicator.

See also: How to Address Indicator Values.

Examples:

def onBar(instrument):
 # Retrieving the value of ATR for the latest fully formed candle.
 value = instrument.atr(period=10)[1]
 # Please note that the "period" argument is specified explicitly while
 # for "maType" the default value is used.

BOLLINGER

Calculates values of the BOLLINGER indicator.

Arguments:

	period (optional, default:20) is the period of the indicator,

	shift (optional, default:2.0) is width of the bands measured in standard deviations,

	priceType (optional, default:”close”) is one of the following: “open”, “high”, “low”, “close”

Returns:

	An instance of the IndVals class with the following attributes:

	ma (list, np.float64): A list of the “middle” line values.

	top (list, np.float64): The “top” line values.

	bottom (list, np.float64): The “bottom” line values.

See also: How to Address Indicator Values.

Examples:

def onBar(instrument):
 # Retrieving the values of BOLLINGER for the latest fully formed candle:
 ma = instrument.bollinger(period=10).ma[1]
 top = instrument.bollinger(period=10).top[1]
 bottom = instrument.adx(period=10).bottom[1]
 # Please note that the "period" argument is specified explicitly
 # while the other ones receive the default values.

CCI

Calculates values of the “CCI” indicator.

Arguments:

	period (optional, default:20) is the period of the indicator,

	priceType (optional, default:”close”) is one of the following: “open”, “high”, “low”, “close”.

Returns:

	list (np.float64): A list of values of the “CCI” indicator.

See also: How to Address Indicator Values.

Examples:

def onBar(instrument):
 # Retrieving the value of APO for the latest fully formed candle.
 value = instrument.cci(period=10)[1]
 # Please note that the "period" argument is specified explicitly while for
 # the other one the default value is used.

CHANDE

Calculates values of the “CHANDE MOMENTUM” indicator.

Arguments:

	period (optional, default:10) is the period of “Chande Momentum”.

	priceType (optional, default:”close”) is one of the following: “open”, “high”, “low”, “close”.

Returns:

	list (np.float64): A list of values of the “APO” indicator.

See also: How to Address Indicator Values.

Examples:

def onBar(instrument):
 # Retrieving the value of APO for the latest fully formed candle.
 value = instrument.chande(period=10)[1]
 # Please note that the "period" argument is specified explicitly while for
 # the other one the default value is used.

EMA

Calculates values of the Exponential Moving Average (EMA) indicator.

Arguments:

	period (optional, default:9) is the period of the indicator.

	priceType (optional, default:”close”) is one of the following: “open”, “high”, “low”, “close”.

Returns:

	list (np.float64): A list of values of the “EMA” indicator.

See also: How to Address Indicator Values.

Examples:

def onBar(instrument):
 # Retrieving the value of APO for the latest fully formed candle.
 valueOfEMA = instrument.ema(period=10)[1]
 # Please note that the "period" argument is specified explicitly while for
 # the other one the default value is used.

KELTNER

Calculates values of the KELTNER CHANNELS indicator.

Arguments:

	period (optional, default:20) is the period of the indicator,

	shift (optional, default:2.0) is width of the bands measured in standard deviations,

	priceType (optional, default:”close”) is one of the following: “open”, “high”, “low”, “close”.

Returns:

	An instance of the IndVals class with the following attributes:

	basis (list, np.float64): A list of the “basis” line values.

	upper (list, np.float64): The “upper” line values.

	lower (list, np.float64): The “lower” line values.

See also: How to Address Indicator Values.

Examples:

def onBar(instrument):
 # Retrieving the values of KELTNER CHANNELS for the latest fully formed candle:
 basis = instrument.keltner(period=10).basis[1]
 upper = instrument.keltner(period=10).upper[1]
 lower = instrument.keltner(period=10).lower[1]
 # Please note that the "period" argument is specified explicitly
 # while the other ones receive the default values.

MACD

Calculates values of the Moving Average Convergence-Divergence (MACD) indicator.

Arguments:

	periodFast (optional, default:12) is the period the fast line of MACD.

	periodSlow (optional, default:26) is the period the slow line of MACD.

	periodSignal (optional, default:9) is the period the signal line of MACD.

	priceType (optional, default:”close”) is one of the following: “open”, “high”, “low”, “close”.

Returns:

	An instance of the IndVals class with the following attributes:

	macd (list, np.float64): A list of the MACD values.

	signal (list, np.float64): The MACD Signal line values.

	histogram (list, np.float64): The MACD histogram values.

See also: How to Address Indicator Values.

Examples:

def onBar(instrument):
 # Retrieving the values of KELTNER CHANNELS for the latest fully formed candle:
 macd = instrument.macd(periodFast=10).macd[1]
 signal = instrument.signal(periodFast=10).signal[1]
 histogram = instrument.histogram(periodFast=10).histogram[1]
 # Please note that the "periodFast" argument is specified explicitly
 # while the other ones receive the default values.

MOMENTUM

Calculates values of the MOMENTUM indicator.

Arguments:

	period (optional, default:10) is the period of the indicator.

	priceType (optional, default:”close”) is one of the following: “open”, “high”, “low”, “close”.

Returns:

	list (np.float64): A list of values of the MOMENTUM indicator.

See also: How to Address Indicator Values.

Examples:

def onBar(instrument):
 # Retrieving the value of APO for the latest fully formed candle.
 value = instrument.momentum(period=10)[1]
 # Please note that the "period" argument is specified explicitly while for
 # the other argument the default value is used.

PPO

Calculates values of the PPO indicator.

Arguments:

	periodFast (optional, default:12) is the period of the fast moving average.

	periodSlow (optional, default:26) is the period of the slow moving average.

	priceType (optional, default:”close”) is one of the following: “open”, “high”, “low”, “close”.

Returns:

	list (np.float64): A list of values of the PPO indicator.

See also: How to Address Indicator Values.

Examples:

def onBar(instrument):
 # Retrieving the value of APO for the latest fully formed candle.
 value = instrument.ppo(periodFast=10)[1]
 # Please note that the "periodFast" argument is specified explicitly while for
 # the other arguments the default values are used.

ROC

Calculates values of the ROC indicator.

Arguments:

	period (optional, default:9) is the period of the indicator.

	priceType (optional, default:”close”) is one of the following: “open”, “high”, “low”, “close”.

Returns:

	list (np.float64): A list of values of the ROC indicator.

See also: How to Address Indicator Values.

Examples:

def onBar(instrument):
 # Retrieving the value of APO for the latest fully formed candle.
 value = instrument.roc(period=12)[1]
 # Please note that the "period" argument is specified explicitly while for
 # the other argument the default value is used.

RSI

Calculates values of the Relative Strength Index (RSI) indicator.

Arguments:

	period (optional, default:14) is the period of the indicator.

	priceType (optional, default:”close”) is one of the following: “open”, “high”, “low”, “close”.

Returns:

	list (np.float64): A list of values of the RSI indicator.

See also: How to Address Indicator Values.

Examples:

def onBar(instrument):
 # Retrieving the value of APO for the latest fully formed candle.
 value = instrument.rsi(period=12)[1]
 # Please note that the "period" argument is specified explicitly while for
 # the "priceType" argument the default value is used.

SMA

Calculates values of the Simple Moving Average (SMA) indicator.

Arguments:

	period (optional, default:9) is the period of the indicator.

	priceType (optional, default:”close”) is one of the following: “open”, “high”, “low”, “close”.

Returns:

	list (np.float64): A list of values of the “SMA” indicator.

See also: How to Address Indicator Values.

Examples:

def onBar(instrument):
 # Retrieving the value of APO for the latest fully formed candle.
 valueOfSMA = instrument.sma(period=10)[1]
 # Please note that the "period" argument is specified explicitly while for
 # the other one the default value is used.

STOCHASTIC

Calculates values of Stochastic Oscillator.

Arguments:

	period (optional, default:14) is the period of the oscillator to calculate the ‘K’ line.

	periodD (optional, default:3) is the smoothing period to calculate the ‘D’ line.

	smoothing (optional, default:1) is the initial smoothing for the ‘K’ line.

Returns:

	An instance of the IndVals class with the following attributes:

	d (list, np.float64): A list of “d” values of the indicator.

	k (list, np.float64): A list of “k” values of the indicator.

See also: How to Address Indicator Values.

Examples:

def onBar(instrument):
 # Retrieving the values of STOCHASTIC for the latest fully formed candle:
 valueOfK = instrument.stochastic(period=10, periodD=4).k[1]
 valueOfD = instrument.stochastic(period=7, periodD=5).d[1]
 # Please note that the "period" and "periodD" arguments are specified explicitly
 # while the "smoothing" argument receives default value "1".

TRIMA

Calculates values of the TRIPPLE MOVING AVERAGE (TRIMA) indicator.

Arguments:

	period (optional, default:10) is the period of the indicator.

	priceType (optional, default:”close”) is one of the following: “open”, “high”, “low”, “close”.

Returns:

	list (np.float64): A list of values of the TRIMA indicator.

See also: How to Address Indicator Values.

Examples:

def onBar(instrument):
 # Retrieving the value of APO for the latest fully formed candle.
 valueOfTRIMA = instrument.trima(period=10)[1]
 # Please note that the "period" argument is specified explicitly while for
 # the "priceType" the default value is used.

WILLIAMS

Calculates values of the TRIPPLE MOVING AVERAGE (TRIMA) indicator.

Arguments:

	period (optional, default:10) is the period of the indicator.

	priceType (optional, default:”close”) is one of the following: “open”, “high”, “low”, “close”.

Returns:

	list (np.float64): A list of values of the TRIMA indicator.

See also: How to Address Indicator Values.

Examples:

def onBar(instrument):
 # Retrieving the value of APO for the latest fully formed candle.
 valueOfTRIMA = instrument.trima(period=10)[1]
 # Please note that the "period" argument is specified explicitly while for
 # the "priceType" the default value is used.

WMA

Calculates values of the Weighted Moving Average (WMA) indicator.

Arguments:

	period (optional, default:9) is the period of the indicator.

	priceType (optional, default:”close”) is one of the following: “open”, “high”, “low”, “close”.

Returns:

	list (np.float64): A list of values of the “WMA” indicator.

See also: How to Address Indicator Values.

Examples:

def onBar(instrument):
 # Retrieving the value of APO for the latest fully formed candle.
 valueOfSMA = instrument.wma(period=10)[1]
 # Please note that the "period" argument is specified explicitly while for
 # the other one the default value is used.

Overview

If you wish to analyze backtest results of an algorithm it could be done with the export_results function. This function exports data requested by a user into a specified csv-file.

export_data()

export_data(indicators, lookback, filename=None)

For every closed position export_data exports data related to the preceding lookback+1 candles. The data comprises

	Time the position was closed;

	Closing price;

	Position’s side;

	Profit;

	Indicators values.

If filename is not specified the function saves the data into the file results.csv otherwise saves data into the file with a given name.

Arguments:

	indicators (dict): Dictionary of indicators of the form
{indname1:(indname, indparams1), indname2:(indname, indparams2), …}

	lookback (int): Specifies lookback period.

	filename (str, default:None): Name of the destination file.
If “filename” is None the data will be exported to “results.csv”.

Raises:

	TypeError: if one of the arguments is not of the proper type.

Returns:

	None

Overview

To run a backtest you must add instrument(s) and timeframe(s) to an instance
of the TNG class. For the moment it is possible to use only one instrument while backtesting. Multiple instruments will be available in the future versions.
The number of timeframes is unlimited. See details below.

addInstrument

Adds specified instrument to an algorithm.

Important: Notice that at the moment backtest does
not support several instruments, so do
not add several instruments.

Arguments:

	ticker (str): Name of the underlying asset.

Warns:

	warn: If you try to add an instrument that has been added already.

Returns:

	None.

Examples:

 # Add a new instrument to your algorithm
 alg = tng(name, regime, start_date, end_date)
 alg.addInstrument("btcusd")

deleteInstrument

Deletes a specified instrument from an algorithm.

Arguments:

	ticker (str): Name of the instrument to delete.

Returns:

	None.

Examples:

 # Adding two instruments and deleting one
 alg = tng(name, regime, start_date, end_date)
 alg.addInstrument("btcusd")
 alg.addInstrument("ethusd")
 alg.deleteInstrument("btcusd")

addTimeframe

Adds specified timeframes to an algorithm.

Arguments:

	timeframes (tuple): Tuple of ints.

Raises:

	TypeError: If tuple has a non-int element.

Returns:

	None.

Examples:

 # Adding a new instrument and 5- and 15-minute timeframes
 alg = tng(name, regime, start_date, end_date)
 alg.addInstrument("btcusd")
 alg.addTimeframe("btcusd", 5, 15)

deleteTimeframe

Deletes specified timeframes from an algorithm.

Arguments:

	timeframes (tuple): Tuple of ints.

Raises:

	TypeError: If tuple has non-int element.

Returns:

	None.

Examples:

 # Adding a new instrument and 15-minute timeframe
 alg = tng(name, regime, start_date, end_date)
 alg.addInstrument("btcusd")
 alg.addTimeframe("btcusd", 5, 15)
 alg.deleteTimeframe("btcusd", 5)

Overview

Any algorithm needs an instance of the TNG class. This instance contains all the methods required for trading and backtesting. To create an instance of the TNG class you must specify the starting and ending dates of a backtest. You may explicitly specify the name of your algorithm and the backtest regime. If you do not specify these arguments the default values will be used.

Regime

Different regimes allow you to open various number of trades after a position was opened. There are two possible options:

	SP – Single Position regime;

	MP – Multiple Position regime.

In the SP regime you are allowed to open only one trade within opened position with prearranged volume. For instance if you opened a long position, you can’t buy more offset since your algorithm used all available volume.

In the MP regime you are allowed to open any number of trades within position.

See more examples here

Arguments:

	name (str, default: “Cornucopia”): Name of the algorithm;

	regime (str, default: “SP”): Controls the number of trades in a single position.
In the “SP” regime only one trade is allowed, in the “MP” multiple trades are allowed.

	start_date (datetime.datetime): Starting time of the backtest.

	end_date (datetime.datetime): Ending time of the backtest.

Raises:

	ValueError: If four variables were sent to the constructor but not
in the following order: (name, regime, start_date, end_date).

	ValueError: If more than two string variables were sent to the constructor.

	ValueError: If regime is not “SP” or “MP”.

	ValueError: If the constructor receives more that two string variables.

	ValueError: If the constructor receives anything different from
two datetime variables.

	ValueError: If start_date is equal to end_date.

Examples:

Constructor with only two parameters.
default values for name and regime will be used.
default name is "Cornucopia",
default regime is "SP" (single position).
Note: start_date and end_date may be specified
in any order.
from datetime import datetime
from tradingene.algorithmic_backtest.tng import TNG
start_date = datetime(2018, 1, 1)
end_date = datetime(2018, 2, 1)
alg = TNG(start_date, end_date)

Constructor with three parameters:
name, start_date, end_date;
by default regime is "SP".
Note: start_date and end_date may be specified
in any order
from datetime import datetime
from tradingene.algorithmic_backtest.tng import TNG
name = "Fleece"
start_date = datetime(2018, 1, 1)
end_date = datetime(2018, 2, 1)
alg = TNG(name, start_date, end_date)

Constructor with three parameters:
regime, start_date, end_date;
by default name is "Cornucopia".
Note: start_date and end_date may be specified
in any order.
from datetime import datetime
from tradingene.algorithmic_backtest.tng import TNG
regime = "MP"
start_date = datetime(2018, 1, 1)
end_date = datetime(2018, 2, 1)
alg = TNG(name, start_date, end_date)

Constructor with four parametera:
name, regime, start_date, end_date
Note: name must be specified before regime,
after name and regime start_date, end_date
may be specified in any order.
name = "Fleece"
regime = "MP"
start_date = datetime(2018, 1, 1)
end_date = datetime(2018, 2, 1)
alg = TNG(name, regime, start_date, end_date)

 There are several predefined constants which a user is able to change. But one should do it carefully taking in account that it might change result of the backtest comparing to the backtest on the Tradingene.com [https://tradingene.com] platform.

All limits are described in file tradingene_package/algorithm_backtest/limits.py

Slippage constants:

When you open or close a trade or position price will be changed against user due to slippage.

Instrument	Slippage
:—:	:—:
BTCUSD	1e0
ETHUSD	1e-1
LTCUSD	1e-2
ETHBTC	1e-6
LTCBTC	1e-6
DSHBTC	1e-6
XRPBTC	1e-9

Lookback period

Constant which controls length of history available in instrument in onBar() method.

Default value:

LOOKBACK_PERIOD = 50

Backtest constants

It is not able to get history data before EARLIEST_START:

EARLIEST_START = datetime(2017, 1, 1)

Volume available in position controls by MAX_AVAILABLE_VOLUME constant:

MAX_AVAILABLE_VOLUME = 1

Overview

Data could be loaded in two different ways. The first one returns “raw”
data, i.e. OHLC, volume data, the values of specified technical indicators. These data
are useful either for research purposes or preparing inputs for machine learning algorithms or other issues. The second method returns data already prepared for fitting machine learning algorithms. See detailed explanations
below.

import_data

Loads data for a given ticker and timeframe from start_date to end_date.
After each bar of a given period, ticker and timeframe calculate_input
and calculate_output functions are called. The function calculate_input
uses the last lookback + 1 candles in order to calculate an input vector, calculate_output
uses lookforward + 1 candles to calculate the corresponding output. The resulting data
will be split in proportion given by split.

Arguments:

	ticker (str): Name of the underlying asset.

	timeframe (int): Timeframe given in minutes.

	start_date (datetime.datetime): Requests data from this date.

	end_date (datetime.datetime): Requests data up to this date.

	calculate_input (callable, default:None): Function that calculates input vector after
every fully formed bar in the requested time period.

	lookback (int, default:None): Function calculate_input will be able
to use lookback + 1 candles to calculate input vector.

	calculate_output (callable, default:None): Function that calculates output vector after
every fully formed bar in the requested time period.

	lookforward (int, default:None): Function calculate_output will be able
to use lookforward + 1 candles to calculate output.

	reverse (bool, default:True): If reverse then the most recent candles have
lower index, i.e. the last candle starts at start_date.

	split (tuple, default:(50,25,25)): Specifies proportion to split prepared data.
All elements have to sum up to 100. The tuple split might be of
length 2 or 3.

	indicators (dict, default:None): Dictionary of indicators that will be calculated
and could be used in calculate_input or calculate_output.
Any key of the dictionary is a str value. The value of the dictionary must be a tuple containing the name of the indicator and its parameters. A tuple with an indicator name only uses the default values.
For instance:

{'sma5':('sma', 5), 'sma10':('sma', 10, 'high'), 'rsi':('rsi'), 'stochastic3':('stochastic', 3)}

	cache (bool, default:True): If True, calculated values will be stored locally.

	bootstrap (int, default:0): If 0 – no bootsrap is used;
If 1 – random sampling will be used to form input
and output sets.

Raises:

	TypeError: If one of the arguments is not of the proper type.

	ValueError: If lookback or lookforward is less than 1.

Returns:

	dict:

	if len(split) == 2:
{‘train_input’: np.array(…), ‘train_output’: np.array(…),
‘test_input’: np.array(…), ‘test_output’: np.array(…)}

	if len(split) == 3:
{‘train_input’: np.array(…), ‘train_output’: np.array(…),
‘test_input’: np.array(…), ‘test_output’: np.array(…),
‘validation_input’: np.array(), ‘validation_output’: np.array()} if len(split) == 3

‘train_input’ (np.array): input data for the train dataset

‘train_output’ (np.array): output data for the train dataset

‘test_input’ (np.array): input data for the test dataset

‘test_output’ (np.array): output data for the test dataset

‘validation_input’ (np.array): input data for the validation dataset

‘validation_output’ (np.array): output data for the validation dataset

import_candles

Imports candles for a given ticker, timeframe and time period.

Arguments:

	ticker (str): Name of the underlying asset.

	timeframe (int): Timeframe given in minutes.

	start_date (datetime.datetime): Requests data from this date.

	end_date (datetime.datetime): Requests data up to this date.

	reverse (bool, default:True): If reverse then the most recent candles have
lower index, i.e. the last candle starts at start_date.

	indicators (dict, default:None): Dictionary of indicators that will be calculated
and could be used in calculate_input or calculate_output.
Any key of the dictionary is a str value. The value of the dictionary must be a tuple containing the name of the indicator and its parameters. A tuple with an indicator name only uses the default values.
For instance:

{'sma5':('sma', 5), 'sma10':('sma', 10, 'high'), 'rsi':('rsi'), 'stochastic3':('stochastic', 3)}

	cache (bool, default:True): If True, calculated values will be stored locally.

Raises:

	TypeError: If one of the arguments is not of the proper type.

Returns:

	DataFrame: Columns contain ‘time’, ‘open’, ‘high’, ‘low’, ‘close’, ‘vol’ and all indicators from indicators dictionary. If some of the indicators
comprises several fields, DataFrame contains each.

 The most important part of the script is the onBar function where you implement a trading logic. This section explains how onBar is called during backtesting and what data you are able to obtain inside onBar.

Backtest procedure

Suppose you engaged 5-minutes timeframe to some instrument:

from datetime import datetime
from tradingene.algorithm_backtest.tng import TNG
start_date = datetime(2017, 1, 2)
end_date = datetime(2017, 1, 3)
alg = TNG("Cornucopia", "SP", start_date, end_date)
alg.addInstrumnt("ethbtc")
alg.addTimeframe("ethbtc", 5)

The backtest starts at 2017-01-02 00:00:00 and aggregates all the data from 2017-01-02 00:00:00 to 2017-01-02 00:05:00 to form the first 5-minute candle. Next the backtest waits for the first tick to come after 2017-01-02 00:05:00 and at the moment it appears onBar is invoked. After that the backtest aggregates all the data from 2017-01-02 00:05:00 to 2017-01-02 00:10:00 and at the moment the first tick comes after 2017-01-02 00:10:00 onBar is invoked. Notice that it could take some time to wait for a tick after which onBar is invoked.

In this example the second call of the onBar method is delayed till 2017-01-02 00:17:00 because no data have come in the period between 2017-01-02 00:08:00 and 2017-01-02 00:17:00. The next 5-minute candle starts at 2017-01-02 00:15:00 and ends at 2017-01-02 00:20:00.

Available data

While backtesting the following data are available: OHLC data, volumes and user demanded indicators values. All data are stored in the instrument variable. If you wish to get the 50 latest opening prices you have to write:

def onBar(instrument):
 open_prices = instrument.open

The values related to the last fully formed candle have index 1. The candle that was formed right before has index 2 and so forth. Index 0 is reserved for the candle that has just been opened. Its opening, high, low and closing prices are the same, the volume is 0.

See more on indexing.

def onBar(instrument):
 # To print the opening time of the last fully formed candle
 # and OHLC prices and volume.
 print(
 instrument.time[1],
 instrument.open[1],
 instrument.high[1],
 instrument.low[1],
 instrument.close[1],
 instrument.vol[1]
)

 # Print time, OHLC, volume of the beginning of the candle that just started to form
 print(
 instrument.time[0],
 instrument.open[0],
 instrument.high[0],
 instrument.low[0],
 instrument.close[0],
 instrument.vol[0]
)

Outputs:

On the first iteration:
20170102000000 8.22 8.22 8.22 8.22 165.045
20170102000500 8.2259 8.2259 8.2259 8.2259 0.0

On the second iteration:
20170102000500 8.2259 8.2259 8.2049 8.2049 15.698329000000001
20170102001500 8.191 8.191 8.191 8.191 0.0

You have access to the latest 50 candles. Nevertheless this number can be changed, you should do it carefully!

List of available attributes

	(list) time

	(list) open

	(list) high

	(list) low

	(list) close

You are able to obtain values of technical indicators as follows:

def onBar(instrument):
 sma10 = instrument.sma(10)
 print(sma10)[1]

Outputs:

On the first iteration:
8.17079

On the second iteration:
8.175180000000001

Indexing rules are the same as for OHLC data. List of available technical indicators see here.

Overview

To implement your trading logic inside onBar function you use the methods described in this section. Some of these methods duplicate others. Some methods might be replaced with several different ones. Some of the methods have been kept to provide backward compability (first of all with the platform [https://www.tradingene.com]).

openPosition()

Usage

Opens a position without acquiring any asset.

Arguments:

	ticker (str, default:None): Asset for which position will be opened.

Warns:

	warn: If you are trying to open a new position but there is another one already opened. Only one opened position is allowed.

Returns:

	int: Random int if it is the first position while backtesting.

	int: Id of the last closed position increased by one if there has been at least one closed position.

	None: If position was not opened.

Example:

This example opens a position for btcusd.
alg = TNG(ticker, timeframe, start_date, end_date)
alg.addInstrument("btcusd")
alg.addTimeframe("btcusd", 10)
alg.openPosition()

This example opens a position for btcusd.
alg = TNG(ticker, timeframe, start_date, end_date)
alg.addInstrument("btcusd")
alg.addTimeframe("btcusd", 10)
alg.openPosition("btcusd")

openLong()

Usage

Opens a position and buys a specified number of lots.

This method combines functionality of the following two methods:

alg.openPosition()
alg.buy(volume)

Arguments:

	volume (float, default:1.): Number of lots to buy.

Warns:

	warn: If there is an opened long position

Returns:

	None: If the last position is opened and long;

	pos_id (int): Position id returned by openPosition().

Examples:

In SP regime opens a position and buys 1 lot.
Used volume is 1, available volume is 0.
def onBar(instrument):
 alg.openLong()

In SP regime opens a position and buys 1 lot.
Used volume is 1, available volume is 0.
def onBar(instrument):
 alg.openLong(0.1)

In MP regime opens a position and buys 1 lot.
Used volume is 1, available volume is 0.
def onBar(instrument):
 alg.openLong()

In MP regime opens a position and buys 0.1 lot.
Used volume is 0.1, available volume is 0.9.
def onBar(instrument):
 alg.openLong(0.1)

openShort()

Usage

Opens a position and sells a specified number of lots.

This function combines functionality of the following two methods:

alg.openPosition()
alg.sell(volume)

Arguments:

	volume (float, default:1.): Number of lots to sell.

Warns:

	warn: If there is an opened short position.

Returns:

	None: If the last position is opened and short.

	pos_id (int): Position id returned by openPosition().

Examples:

In SP regime opens a position and sells 1 lot.
Used volume is -1, available volume is 0.
def onBar(instrument):
 alg.openShort()

In SP regime opens a position and sells 1 lot.
Used volume is -1, available volume is 0.
def onBar(instrument):
 alg.openShort(0.1)

In MP regime opens a position and sells 1 lot.
Used volume is -1, available volume is 0.
def onBar(instrument):
 alg.openShort()

In MP regime opens a position and sells 0.1 lot.
Used volume is -0.1, available volume is 0.9.
def onBar(instrument):
 alg.openShort(0.1)

closePosition()

Usage

Closes the last opened position.

Arguments:

	id (int, default:None): id of a position to close.

Warns:

	warn: If there is no opened position.

	warn: If the position with specified id has been closed already.

Returns:

	None

Examples:

Opens a long position. If the last opening price
was greater than 10000 closes this position.
def onBar(instrument):
 alg.openLong(1)
 if instrument.open[1] > 10000:
 alg.closePosition()

onPositionClose()

Usage

Calls the handler function right after position is closed.

Invokes handler function when the position referred by pos_id is closed.

Arguments:

	pos_id (int): id of a position.

	handler (callable): function to be invoked after position is closed.

Raises:

	ValueError: If the position referred by pos_id was not found.

	TypeError: If the handler is not callable.

Returns:

	None

Examples:

Works in any regime.
pos_id = None
def onBar(instrument):
 global pos_id
 pos_id = alg.openLong()
 alg.onPositionClose(pos_id, handler)
 alg.closePosition(pos_id)

def handler():
 print("Position closed!")

buy()

Usage

Buys a specified volume of an asset.

	In Single Position regime:

buys 1 lot despite of the volume specified. If the last position is
closed then a new position will be opened automatically. If the last position is opened
and short then it will be closed and a new 1-lot long position will be opened. If the last position is opened and long then nothing will happen.

	In Multiple Position regime:

buys a specified number of lots. If the last position is closed then a new position will be
opened. If the last trade in the position is short then the position won’t be
closed but a specified number of lots will be bought. If the last trade
in the position is long then a specified number of lots will be bought.
Notice that volume of any position is limited as follows:
- MAX_AVAILABLE_VOLUME <= used_volume <= MAX_AVAILABLE_VOLUME.

Arguments:

	volume (float, default:1.): Number of lots to buy.

Warns:

	warn: If the specified volume is negative.

	warn: If the last position is opened and long (in SP regime only).

Raises:

	ValueError: If the specified volume exceeds MAX_AVAILABLE_VOLUME (in SP regime only).

	ValueError: If cumulative volume of all trades within a position exceeds MAX_AVAILABLE_VOLUME (in MP regime only).

Returns:

	None

Examples:

In SP regime opens a position and buys 1 lot.
Used volume is 1, available volume is 0.
def onBar(instrument):
 alg.openPosition()
 alg.buy()

In SP regime opens a position and buys 1 lot.
Used volume is 1, available volume is 0.
def onBar(instrument):
 alg.openPosition()
 alg.buy(0.1)

In SP regime buys 1 lot.
Position will be opened automatically.
Used volume is 1, available volume is 0.
def onBar(instrument):
 alg.buy()

In SP regime buys 1 lot using buy()
then closes opened long position
and sells 1 lot using sell().
def onBar(instrument):
 alg.buy() # used volume is 1, available is 0;
 alg.sell() # used volume is -1, available volume is 0.

In MP regime buys 0.1 lots then buys 0.2 lots
def onBar(instrument):
 alg.buy(0.1) # used volume is 0.1, available is 0.9;
 alg.buy(0.2) # used volume is 0.3, available volume is 0.7.

In MP regime buys 0.1 lots then sells 0.2 lots
def onBar(instrument):
 alg.buy(0.1) # used volume is 0.1, available is 0.9;
 alg.sell(0.2) # used volume is -0.1, available volume is 0.9.

sell()

Usage

Sells a specified volume of an asset.

	In Single Position regime:

sells 1 lot despite of the volume specified. If the last position is
closed then a new position will be opened automatically. If the last position is opened
and long then it will be closed and a new 1-lot short position will be opened. If the last position is opened and short then nothing will happen.

	In Multiple Position regime:

sells a specified number of lots. If the last position is closed then a new position will be
opened. If the last trade in the position is long then the position won’t be
closed but a specified number of lots will be sold. If the last trade
in the position is short then a specified number of lots will be sold.
Notice that volume of any position is limited as follows:
- MAX_AVAILABLE_VOLUME <= used_volume <= MAX_AVAILABLE_VOLUME.

Arguments:

	volume (float, default:1.): Number of lots to sell.

Warns:

	warn: If the specified volume is negative.

	warn: If the last position is open and short (in SP regime only).

Raises:

	ValueError: If the specified volume exceeds MAX_AVAILABLE_VOLUME (in SP regime only).

	ValueError: If cumulative volume of positions exceeds MAX_AVAILABLE_VOLUME (in MP regime only).

Returns:

	None

Examples:

In SP regime opens a position and sells 1 lot.
Used volume is -1, available volume is 0.
def onBar(instrument):
 alg.openPosition()
 alg.sell()

In SP regime opens a position and sells 1 lot.
Used volume is -1, available volume is 0.
def onBar(instrument):
 alg.openPosition()
 alg.sell(0.1)

In SP regime sells 1 lot.
Position will be opened automatically.
Used volume is -1, available volume is 0.
def onBar(instrument):
 alg.sell()

In SP regime sells 1 lot using sell()
then closes opened short position
and buys 1 lot using buy().
def onBar(instrument):
 alg.sell() # used volume is -1, available is 0;
 alg.buy() # used volume is 1, available volume is 0.

In MP regime sells 0.1 lots then sells 0.2 lots
def onBar(instrument):
 alg.sell(0.1) # used volume is -0.1, available is 0.9;
 alg.sell(0.2) # used volume is -0.3, available volume is 0.7.

In MP regime sells 0.1 lots then buys 0.2 lots
def onBar(instrument):
 alg.sell(0.1) # used volume is -0.1, available is 0.9;
 alg.buy(0.2) # used volume is 0.1, available volume is 0.9.

setSL()

Usage

Sets the maximum loss for a position.

After a position is opened a user is able to define the maximum acceptable loss.
While backtesting the current profit of the position is checked at every tick.
If the loss becomes greater than the specified value then the position
will be closed automatically.

If you wish to cancel stoploss, set the stop-loss to zero.

Arguments:

	loss (float, default:None): Value of the stop-loss.

Raises:

	ValueError: If loss is not nonnegative.

Returns:

	None

Examples:

Works in any regime.
def onBar(instrument):
 alg.buy()
 alg.setSL(loss = 300)
 alg.setSL(loss = 0)

setTP()

Usage

Sets the maximum profit for a position.

After a position is opened a user is able to define the minimum desired profit.
While backtesting the current profit of the position is checked at every tick.
If the profit becomes greater than the specified value then the position
will be closed automatically.

If you wish to cancel takeprofit, set the stop-loss to zero.

Arguments:

	profit (float, default:None): Value of the take-profit.

Raises:

	ValueError: If profit is not nonnegative.

Returns:

	None

Examples:

Works in any regime.
def onBar(instrument):
 alg.buy()
 alg.setTP(profit = 300)
 alg.setTP(profit = 0) #Cancels take-profit.

setSLTP()

Usage

Sets the stop-loss and take-profit.

Invoke of this function is equivalent to the following code:

alg.setSL(loss)
alg.setTP(profit)

Arguments:

	loss (float, default:None): Value of the stop-loss.

	profit (float, default:None): Value of the take-profit.

Returns:

	None

Examples:

Sets the stop-loss and take-profit with a single method.
Works in any regime.
def onBar(instrument):
 alg.buy()
 alg.setSLTP(loss = 300, profit = 300)
 # equivalelnt to
 alg.setSL(loss = 300)
 alg.setTP(profit = 300)

getAvailableVolume()

Usage

Returns the volume available for trading.

If the last position is opened calculates available volume. Notice that for the available volume the following inequality holds:

0 <= available volume <= MAX_AVAILABLE_VOLUME.

Warns:

	warn: If the last position is closed.

Returns:

	None: If the last position is not opened

	float: If the last position is opened.

Examples:

In SP regime
def onBar(instrument):
 alg.buy()
 alg.getAvailableVolume() # returns 0

In MP regime
def onBar(instrument):
 alg.buy(0.2)
 alg.getAvailableVolume() # returns 0.8

In MP regime
def onBar(instrument):
 alg.sell(0.5)
 alg.getAvailableVolume() # returns 0.5

getLastPrice()

Usage

Returns the last price simulated while backtesting.

Returns the last price for a specified instrument. If the instrument
is not specified then the last price of the first-added
instrument will be returned.

Arguments:

	ticker (str, default:None): Name of the underlying asset.

Returns:

	float: Last price simulated while backtesting.

Raises:

	AssertionError: If only one instrument has been added by a user, and a non-exisiting ticker was specified.

	NameError: If the ticker was not found among the added instruments.

Examples:

Works in any regime.
alg = TNG(name, regime, start_date, end_date)
alg.addInstrument("btcusd")
alg.addTimeframe("btcusd", 10)
def onBar(instrument):
 alg.getLastPrice()

Works in any regime.
alg = TNG(name, regime, start_date, end_date)
alg.addInstrument("btcusd")
alg.addTimeframe("btcusd", 10)
def onBar(instrument):
 alg.getLastPrice("btcusd")

Works in any regime.
alg = TNG(name, regime, start_date, end_date)
alg.addInstrument("btcusd")
alg.addInstrument("ethbtc")
alg.addTimeframe("btcusd", 10)
alg.addTimeframe("ethbtc", 15, 30)
def onBar(instrument):
 # Returns the last price of btcusd
 alg.getLastPrice()

Works in any regime.
alg = TNG(name, regime, start_date, end_date)
alg.addInstrument("btcusd")
alg.addInstrument("ethbtc")
alg.addTimeframe("btcusd", 10)
alg.addTimeframe("ethbtc", 15, 30)
def onBar(instrument):
 alg.getLastPrice()# Returns the last price of btcusd
 alg.getLastPrice("ethbtc")

getPositionSide()

Usage

Returns a position side given position’s id pos_id.

Arguments:

	pos_id (int): Id of the position

Raises:

	TypeError: If pos_id is not integer

	ValueError: If a position with pos_id was not found

Returns:

	float:

	+1., if a position was long;

	-1., if a position was short

Examples:

Works in both regimes
def onBar(instrument):
 pos_id = alg.buy()
 pos_side = alg.getPositionSide(pos_id)
 # pos_side equals 1.

on()

Usage

Waits for a specified event and calls the handler.

User can specify two types of events: Price event and Time event.

	Price event:
Waits for a specified price. At the moment the current price
strikes the specified price the handler will be called.

	Time event:
Waits for a specified time. At the moment the current time
is equal to or exceeds the specified time the handler will be called.

Can be cancelled with off() call.

Arguments:

	type_ (str, default:None): Name of the type of event: “Price” or “Time”.

	params (default:None): For Price event – price (float).
For Time event – time (int).

	argument (tuple, default:None): Arguments for a handler method.

	handler (function, default:None): method to be invoked when the specified event happens.

Returns:

	int: id of the event.

Raises:

	ValueError: If type_ was neither “Price” nor “Time”.

Examples:

Works in any regime.
event_id = None
def onBar(instrument):
 global event_id
 event_id = alg.on("Price", 10000, handler)

def handler():
 print("Price event handler!")

Works in any regime.
event_id = None
def onBar(instrument):
 global event_id
 event_id = alg.on("Time", 20180201000000, handler)

def handler():
 print("Time event handler!")

off()

Usage

Cancels event.

If an event was set by on() method, off() will cancel it.

Arguments:

	id (int): id of the event.

Returns:

	None

Warns:

	warn: If no event with the specified id was found.

Examples:

Works in any regime.
event_id = None
def onBar(instrument):
 global event_id
 event_id = alg.on("Price", 10000, handler)
 if alg.getLastPrice() > 10000:
 alg.off(event_id)

def handler():
 global event_id
 print("Price event handler!")

Works in any regime.
event_id = None
def onBar(instrument):
 global event_id
 event_id = alg.on("Time", 20180201000000, handler)
 if instrument.time > 20180201000000:
 alg.off(event_id)

def handler():
 print("Time event handler!")

 _static/file.png

_static/down-pressed.png

_static/down.png

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_images/logo_tg_large_1stroke.png
4

_images/profit_plot.png
Profit

1000

500 1

500

Profit plot

a5

10001

